

THE 24 α - AND 24 β -EPIMERS OF 24-ETHYLCHOLESTA-5,22-DIEN-3 β -OL IN TWO CLERODENDRUM SPECIES

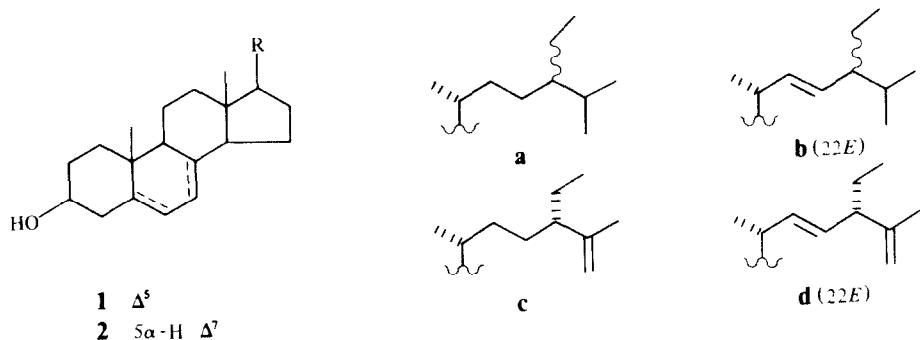
TOSHIHIRO AKIHISA, YUZURU MATSUBARA, PARTHASARATHI GHOSH,* SWAPNADIP THAKUR,* NAOTO SHIMIZU,† TOSHIKAKE TAMURA and TARO MATSUMOTO

College of Science and Technology, Nihon University, 1-8, Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan, *Department of Chemistry, Burdwan University, Burdwan, 713104, India, †Ibaraki Research Laboratory, Hitachi Chemical Co., Hitachi-shi, Ibaraki 317, Japan

(Received 27 July 1987)

Key Word Index—*Clerodendrum fragrans*, *C. infortunatum*, Verbenaceae, sterol, 24 β -ethylcholesta-5,22E-dien-3 β -ol, 24 α -ethylcholesta-5,22E-dien-3 β -ol, poriferasterol, stigmasterol

Abstract— ^{13}C NMR spectroscopy of the 24-ethylcholesta-5,22E-dien-3 β -ol isolated from the aerial parts of *Clerodendrum fragrans* and *C. infortunatum* demonstrated the occurrence of a minor amount of the 24 β -epimer, poriferasterol, in addition to the dominant 24 α -epimer, stigmasterol. This was confirmed by 400 MHz ^1H NMR spectroscopy after enrichment of the 24 β -epimer by repetitive reverse-phase HPLC. The ratios (24 α :24 β) of the C-24 epimeric mixtures were estimated to be 23:2 for the *C. fragrans* sterol and 19:1 for the *C. infortunatum* sterol


INTRODUCTION

Plant species belonging to the genus *Clerodendrum* of the family Verbenaceae are known to contain 24 β -ethylsterols possessing a Δ^{25} -bond, i.e. 24 β -ethylcholesta-5,25-dien-3 β -ol (**1c**, clerosterol or 25-dehydrochionasterol) and its 22E-dehydro derivative, 24 β -ethylcholesta-5,22E,25-trien-3 β -ol (**1d**, 22E-dehydroclerosterol or 25-dehydroporiferasterol), as the dominant sterols [1-8]. This is the characteristic feature for the *Clerodendrum* species since the great majority of higher plants contain 24 α -alkylsterols (24R if side chain saturated or Δ^{25} -unsaturated sterols, 24S if the Δ^{22} -derivative) which lack a Δ^{25} -bond as the major sterols such as 24 α -ethylcholesta-5-en-3 β -ol (24 α -**1a**, sitosterol) and 24 α -ethylcholesta-5,22E-dien-3 β -ol (24 α -**1b**, stigmasterol) [9]. Our recent studies on the sterol constituents of two *Clerodendrum* species, *C. fragrans* [10] and *C. infortunatum* [11], have shown that these plants contain **1c** and **1d** as the major sterols in agreement with the previous observations on various *Clerodendrum* plants [1-8]. In addition, we have demonstrated the occurrence of cholest-5-en-3 β -ol (cholesterol), 24-methylcholesterol (mixture of the C-24 epimers), 24 α -**1a** and 24 α -**1b** as the minor sterol constituents in *C. fragrans* [10] and *C. infortunatum* [11], and moreover, two very rare sterols, 24 β -methylcholesta-5,22E,25-trien-3 β -ol and 24 α -ethyl-5 α -cholest-22E-en-3 β -ol, in *C. fragrans* [10]. Although the stereochemistry at C-24 of the above 24-alkylsterols from the two *Clerodendrum* species [10, 11] has been determined based on the high-resolution ^1H NMR data (250 or 400 MHz), our attempted measurement of the ^{13}C NMR spectra for 24-ethylcholesta-5,22E-dien-3 β -ol (**1b**) from both plants has suggested the occurrence of the 24 β -epimer, poriferasterol (24 β -**1b**), in addition to the dominant 24 α -epimer, stigmasterol (24 α -**1b**). This paper describes our demonstration of the co-occurrence of 24 α - and 24 β -**1b** in *C. fragrans* and *C. infortunatum*.

RESULTS AND DISCUSSION

Comparison of the 400 MHz ^1H NMR data (Table 1) with the acetates of authentic stigmasterol (24 α -**1b**) and poriferasterol (24 β -**1b**) showed apparently that the acetyl derivatives of 24-ethylcholesta-5,22E-dien-3 β -ol (**1b**) isolated from the aerial parts of *Clerodendrum fragrans* and *C. infortunatum* were the 24 α -epimers in agreement with our recent observations [10, 11]. However, the ^{13}C NMR spectra of the **1b**-acetates from both plants displayed the weak but distinctive signals due to the carbons C-16, C-21 and C-29 for the 24 β -epimer in addition to the signals for the dominant 24 α -epimer (Table 2). As is evident from the ^{13}C NMR data for the acetates of authentic 24 α - and 24 β -**1b**, the 24 β -epimer afforded the C-16 (24 β : δ 28.80; 24 α : δ 28.91) and C-21 (24 β : δ 20.97; 24 α : δ 21.02) signals at slightly higher field, while the C-29 (24 β : δ 12.42; 24 α : δ 12.25) signal was at somewhat lower field than the corresponding signal of the 24 α -epimer. These signals are the useful ones chosen to discriminate between the C-24 epimeric sterols possessing a 24-ethyl- Δ^{22} side chain [12-14]. Thus, the ^{13}C NMR spectral data suggested the presence of the 24 β -epimer in addition to the dominant 24 α -epimer in **1b** isolated from *C. fragrans* and *C. infortunatum*. The ratios 24 α :24 β of the epimeric mixtures of **1b** were estimated to be 23:2 for the *C. fragrans* sterol and 19:1 for the *C. infortunatum* sterol based on the comparison of peak heights of the relevant signals (C-16, C-21 and C-29).

In order to confirm the co-occurrence of both C-24 epimers of **1b** from the two *Clerodendrum* plants, these were further investigated by reversephase HPLC and ^1H NMR spectroscopy. HPLC on an Ultrasphere ODS column showed that the acetates of authentic 24 α - and 24 β -**1b** possess slightly different retention properties (24 α -**1b**-acetate, RR_t = 1.06, 24 β -**1b**-acetate, RR_t = 1.09). Taking this into account, the **1b**-acetates from *C. fragrans* and *C. infortunatum* were subjected to HPLC fraction-

Table 1 ^1H NMR chemical shifts (δ) of 24-ethyl- Δ^5 -sterol (**1b**) acetates (400 MHz, CDCl_3 , TMS as internal standard)*

^1H species	Authentic sterols		<i>Clerodendrum fragrans</i>		<i>C. infortunatum</i>	
	24α-1b	24β-1b	1b	1b[†] (24α) (24β)	1b	1b[‡] (24α) (24β)
18-H ₃ (s)	0.697	0.695	0.698	0.697	0.696	0.697
19-H ₃ (s)	1.021	1.021	1.022	1.021	1.021	1.022
21-H ₃ (d)	1.021	1.025	1.022	1.024	1.021	1.025
	(6.6)	(6.6)	(6.6)	(6.6)	(6.1)	(6.6)
26-H ₃ (d)	0.846	0.844	0.848	0.845	0.847	0.847
	(6.6)	(6.0)	(6.6)	(5.5)	(6.7)	(5.5)
27-H ₃ (d)	0.796	0.792	0.798	0.796 0.792	0.796	0.798 0.793
	(7.1)	(6.6)	(7.1)	(7.1) (6.6)	(6.7)	(7.1) (6.6)
29-H ₃ (t)	0.805	0.812	0.807	0.805 0.812	0.805	0.807 0.812
	(7.4)	(7.4)	(7.1)	(7.4) (7.4)	(7.0)	(7.1) (7.4)
23-H (dd) [§]	5.017	5.022	5.017	5.016 5.022	5.016	5.017 5.022
	(8.5, 15.1)	(8.8, 14.8)	(8.8, 15.4)	(8.8, 15.4) (8.8, 15.4)	(8.5, 15.3)	(8.8, 15.4) (8.2, 15.4)
22-H (dd) [§]	5.157	5.164	5.157	5.157 5.164	5.157	5.157 5.165
	(8.5, 15.1)	(8.5, 15.1)	(8.8, 15.4)	(8.8, 14.8) (8.8, 15.4)	(8.6, 15.3)	(8.8, 15.4) (8.2, 14.8)

*Figures in parentheses denote J values (Hz). Other signals observed for all of the **1b**-acetates were δ 2.030 (3H, s, 3 β -OAc), 2.31 and 2.33 (each 1H and m , 7-H₂), 4.60 (1H, m , $W_{1,2}$ = 24 Hz, 3 α -H), 5.37 (1H, m , $W_{1,2}$ = 10 Hz, 6-H).

[†]24 β -Epimer enriched sample (3 times of the HPLC enrichment, 24 α 24 β = 45.55)

[‡]24 β -Epimer enriched sample (4 times of the HPLC enrichment, 24 α 24 β = 49.51)

[§]Assignment made by 2D ^1H - ^1H COSY NMR technique. Thus, the assignment of the corresponding signals made for 24-ethyl- Δ^8 -sterol in our recent paper (ref [18]) must be revised.

ation. The HPLC elution peak of **1b**-acetate was divided into two portions. One was the first half (fraction A) and the other was the latter half (fraction B) of the elution peak, in which fraction B was expected to contain more 24 β -epimer than in fraction A. Fraction B was subjected again to HPLC with collection of the latter half of the elution peak. After this repeated enrichment procedure by HPLC for the 24 β -epimer, the **1b**-acetates from *C. fragrans* (after 3 HPLC enrichments) and *C. infortunatum* (4 times) were subjected to ^1H NMR spectroscopy (measurement of the ^{13}C NMR spectra was abandoned due to the minute quantities of the **1b**-acetates eventually obtained). As shown by the ^1H NMR data in Table 1, the **1b**-acetates which had undergone the HPLC enrichment were the mixtures of the 24 α - and 24 β -epimers which confirmed the presence of the 24 β -**1b** (poriferasterol) in addition to the 24 α -epimer (stigmasterol) in the two

Clerodendrum plants. The 24 α 24 β epimeric ratios of the **1b**-acetates which had undergone HPLC enrichment were estimated to be 45.55 for *C. fragrans* sterol and 49.51 for *C. infortunatum* sterol on the basis of the peak heights of the 22-H and 23-H olefinic signals. Although the side chain methyl signals are the usual criteria for differentiating the C-24 epimers of 24-ethyl- Δ^{22} -sterol [15-17], the 22-H and 23-H olefinic signals might be more useful for the stereochemical assignment in the ^1H NMR spectrum at 400 MHz since a clear difference was observed in the chemical shifts of the olefinic proton doublets between the C-24 epimers of **1b**-acetate, i.e. 24 α -epimer (authentic compound), δ 5.017 and 5.157 (each 1H), 24 β -epimer, δ 5.022 and 5.164 (each 1H), which was observed also for the C-24 epimers of 24-ethyl-5 α -cholesta-8,22E-dien-3 β -ol acetate [18].

This study has demonstrated unambiguously that '24-

Table 2 ^{13}C NMR chemical shifts (δ) of 24-ethyl- $\Delta^{5,22}$ -sterol (**1b**) acetates (62.9 MHz, CDCl_3 , TMS as internal standard)

C	Authentic sterols		Acetate		<i>C. infortunatum</i>
	24 α - 1b	24 β - 1b	1b* (24 α) (24 β)	1b† (24 α) (24 β)	
1	36.99	36.99	37.01	36.99	
2	27.78	27.78	27.78	27.78	
3	73.92	73.95	73.94	73.95	
4	38.12	38.12	38.12	38.12	
5	139.57	139.58	139.60	139.60	
6	122.58	122.59	122.58	122.59	
7	31.86	31.86	31.88	31.88	
8	31.86	31.86	31.88	31.88	
9	50.05	50.05	50.06	50.05	
10	36.59	36.61	36.61	36.61	
11	21.02	21.02	21.02	21.02	
12	36.99	36.99	36.93	36.99	
13	42.19	42.21	42.21	42.21	
14	56.77	56.76	56.77	56.77	
15	24.36	24.34	24.36	24.36	
16	28.91	28.80	28.89 28.78	28.91 28.81	
17	55.92	55.90	55.94	55.92	
18	12.05	12.07	12.05	12.05	
19	19.31	19.31	19.31	19.31	
MeCO	21.40	21.43	21.42	21.43	
MeCO	170.37	170.40	170.42	170.46	
20	40.49	40.44	40.47	40.50	
21	21.02	20.97	21.02 20.96	21.02 20.98	
22	138.26	138.21	138.25	138.26	
23	129.23	129.29	129.26	129.24	
24	51.24	51.21	51.22	51.22	
25	31.86	31.86	31.88	31.88	
26	21.23	18.94	21.22‡	21.22‡	
27	18.99	21.99	18.99‡	18.99‡	
28	25.41	25.40	25.40	25.41	
29	12.25	12.42	12.23 12.43	12.26 12.45	

* 24α 24 β = 23.2† 24α 24 β = 19.1‡Assignment in each column interchanges as for the 24 β -epimer

ethylcholesta-5,22E-dien-3 β -ol' isolated from two *Clerodendrum* species (*C. fragrans* and *C. infortunatum*) consists of the dominant 24 α -epimer, stigmasterol, together with a minor amount of the 24 β -epimer, poriferasterol. The occurrence of a 24 β -ethylsterol, which lacks a Δ^{25} -bond in the side chain, is very rare in higher plants. Only some plants of the family Cucurbitaceae have so far been demonstrated to contain the 24 β -ethylsterols such as 24 β -ethyl-5 α -cholest-7-en-3 β -ol (**2a**, 22-dihydrochondrillasterol) and 24 β -ethyl-5 α -cholesta-7,22E-dien-3 β -ol (**2b**, chondrillasterol) [14, 18]. It seems probable that both the C-24 epimers of 24-ethylsterols lacking a Δ^{25} -bond (e.g. side chains **a** and **b**) will occur in other higher plants, which contain 24 β -ethylsterols possessing a Δ^{25} -bond (e.g. side chains **c** and **d**) as the dominant sterol components.

EXPERIMENTAL

Mps uncorr HPLC was carried out on an Ultrasphere ODS 5 μ column (Altex, 25 cm \times 10 mm 1 d) with MeOH as a mobile phase (flow rate, 4 ml/min) which was monitored by a RI detector *RR*, on HPLC of the sterol acetates were expressed relative to cholesterol acetate. ^1H NMR (400 MHz) and ^{13}C NMR (62.9 MHz) spectra were determined in CDCl_3 with TMS as internal standard. Isolation of 24-ethylcholesta-5,22E-dien-3 β -ol (**1b**) from the aerial parts of *Clerodendrum fragrans* (Vent) R Br [10] (rel. abundance of **1b** in the sterol mixture was 6.4%) and *C. infortunatum* L [11] (relative abundance of **1b** in the sterol mixture was 3.3%) was as described previously [10, 11]. The authentic sample of stigmasterol (24 α -**1b**; acetate, mp 143.0–144.5°) was isolated from Cucurbitaceae plants [14, 18], while that of poriferasterol (24 β -**1b**, acetate, mp 142.0–144.5°)

was prepared from 22E-dehydrocholesterol (**1d**) by partial hydrogenation over pre-reduced PtO₂ in EtOH at atmospheric pressure and temp for 6 hr followed by HPLC purification

Acknowledgement—We thank Dr T Takido for the ¹H NMR spectra

REFERENCES

- 1 Manzoor-I-Khuda, M (1966) *Tetrahedron* **22**, 2377
- 2 Bolger, L M, Rees, H H, Ghisalberti, E L, Goad, L J and Goodwin, T W (1970) *Tetrahedron Letters* 3043
- 3 Bolger, L M, Rees, H H, Ghisalberti, E L, Goad, L J and Goodwin, T W (1970) *Biochem. J.* **118**, 197
- 4 Subramanian, S S, Nair, A G R and Vedantham, T N C (1973) *Phytochemistry* **12**, 2078
- 5 Joshi, K C, Prakash, L and Shah, R K (1977) *J. Indian Chem. Soc.* **54**, 1104
- 6 Joshi, K C, Singh, P and Mehra, A (1979) *Planta Med.* **37**, 64.
- 7 Prakash, L and Grag, G (1980) *Pharmazie* **35**, 500
- 8 Pinto, W J and Nes, W R (1985) *Phytochemistry* **24**, 1095
- 9 Nes, W R and McKean, M L (1977) *Biochemistry of Steroids and Other Isopentenoids* University Park Press, Baltimore
- 10 Akihisa, T, Ghosh, P, Thakur, S, Oshikiri, S, Tamura, T and Matsumoto, T (1987) *Phytochemistry* **26** (in press, Phy 381)
- 11 Thakur, S, Ghosh, P, Akihisa, T, Shimizu, N, Tamura, T and Matsumoto, T (1987) *Indian J. Chem.* (in press)
- 12 Wright, J L C, McInnes, A G, Shimizu, S, Smith, D G, Walter, J A, Idler, D and Khalil, W (1978) *Can. J. Chem.* **56**, 1898
- 13 Matsumoto, T, Hasegawa, I, Shimizu, N and Akihisa, T (1985) *Yukagaku* **34**, 476
- 14 Akihisa, T, Thakur, S, Rosenstein, F U and Matsumoto, T (1986) *Lipids* **21**, 39
- 15 Rubinstein, I, Goad, L J, Clague, A D H and Mulheirn, L J (1976) *Phytochemistry* **15**, 195
- 16 Nes, W R, Krevitz, K, Joseph, J, Nes, W D, Harris, B, Gibbons, G F and Patterson, G W (1977) *Lipids* **12**, 511
- 17 Chiu, P-L and Patterson, G W (1981) *Lipids* **15**, 203
- 18 Akihisa, T, Shimizu, N, Ghosh, P, Thakur, S, Rosenstein, F U, Tamura, T and Matsumoto, T (1987) *Phytochemistry* **26**, 1693